functional Magnetic Resonance Imaging - Methods

Denis Schluppeck

Visual Neuroscience Group University of Nottingham, UK 2/4

Next 4 3 lectures

- 1. Spatial and temporal properties of fMRI (+ linearity, convolution)
- 2. Signal and Noise (+ Fourier domain, convolution)
- 3. Preprocessing of fMRI data (+ common software tools)
- 4. Statistics + experimental design (+ linear regression, GLM, multiple comparisons)

Quick recap: data

1. numbers (=pixel/voxel)

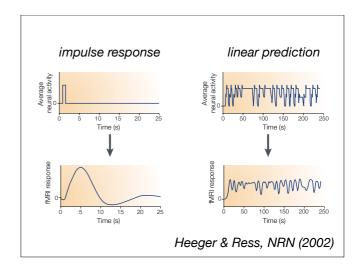
1. 1.234

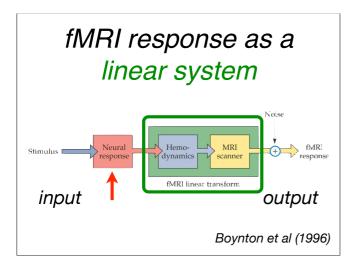
2. a bunch of numbers on a grid (=slice)

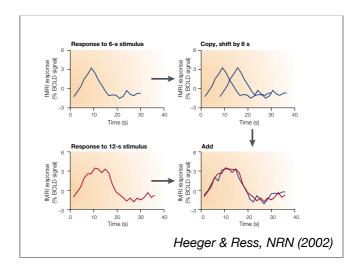
3. a collection of slices (=volume)

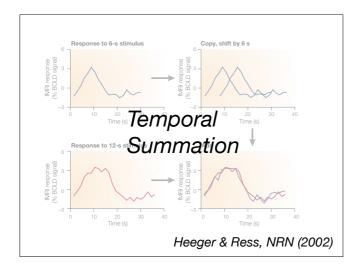
4. many volumes over time, acquired every TR (=timeseries)

Data: indexing


- if we have a timeseries of volumes (in 3D + 1D = 4D), we need 4 "indices" or coordinates to uniquely identify a voxel (x,y,z,t)
- multi-dimensional arrays
- we can slice this data in different ways:
- >> data(:,:,12,1) % get slice z=12 at t=1
- >> data(32,:,:,1) % ??
- >> data(1,1,12,:) % get timeseries at [1,1,12]


Data: indexing

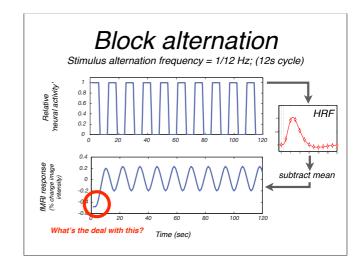

- if we have a timeseries of volumes (in 3D + 1D = 4D), we need 4 "indices" or coordinates to uniquely identify a voxel (x,y,z,t)
- multi-dimensional arrays
- we can slice this data in different ways:
- >> data(:,:,12,1) % get slice z=12 at t=1
- >> data(32,:,:,1) % y/z slice at x=32, t=1
- data(1,1,12,:) % get timeseries at [1,1,12]

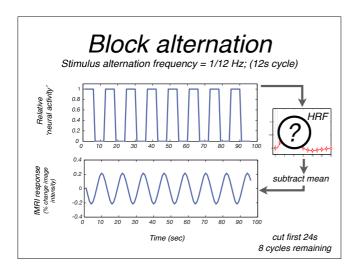

HRF

- the shape of the response to a brief impulse (e.g. visual stimulus) is called the haemodynamic response function (HRF)
- for a linear system, knowing the impulse response is sufficient to predict the response to an arbitrary input
- Linearity clarification...
- Fourier domain / convolution
- Signal-to-noise / contrast-to-noise

Neural activity: input to fMRI transform

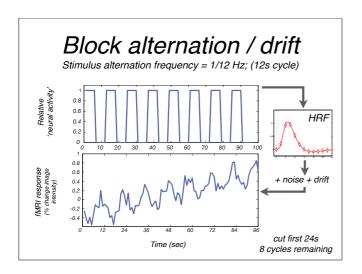
- 1. fMRI response is approximately a linear system
- 2. neural activity is **not** a linear transform of e.g. visual stimulus
 - neuronal firing rates are > 0 (so at least half-rectifying)
 - response to visual contrast saturates (contrast response function)

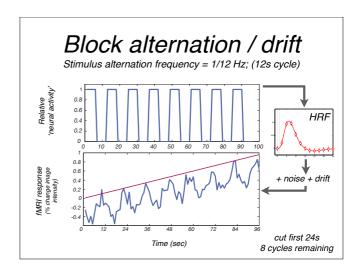


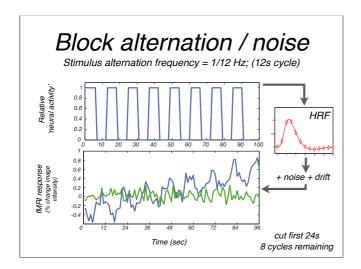

Linearity does not always hold

- 1. very brief events (threshold)
- 2. "refractory" effects for very closely spaced events

cf. fMRI adaptation

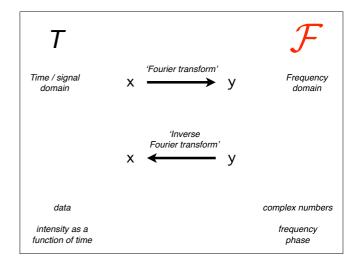

Simulation fMRI Response in a block design experiment

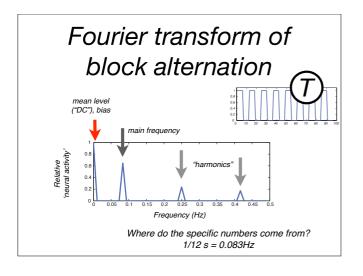


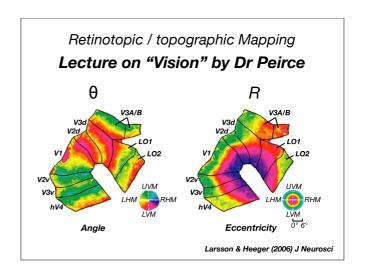


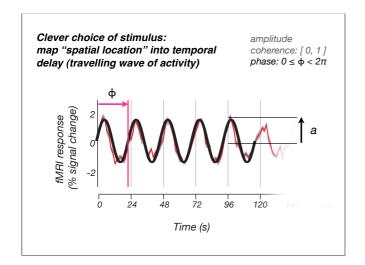
Noise

- measured data is never perfect...
- sources of (unwanted) variability: heart beat, breathing, movements, ...
- in fMRI data we usually (highfrequency) 'noise' and drift






Time / Fourier Domain


Time domain versus Fourier domain

- two different ways of looking at a signal: one in terms of time: s, ms, the other in terms of frequencies: Hz (s⁻¹), cycles/scan
- Mathtools (Eero Simoncelli, NYU) http://www.cns.nyu.edu/~eero/math-tools/ contains additional links to www / books

Lots of Fourier transforms... time domain Fourier Transform continuous, infinite continuous, periodic discrete, infinite

discrete, infinite

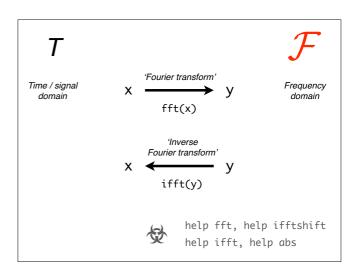
discrete, periodic

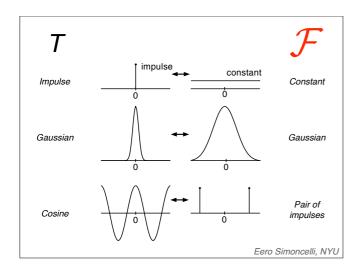
discrete, finite

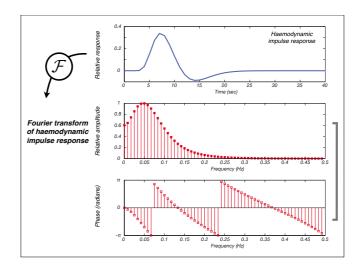
continuous, periodic

discrete, periodic

discrete, finite


DTFT


DFS


DET

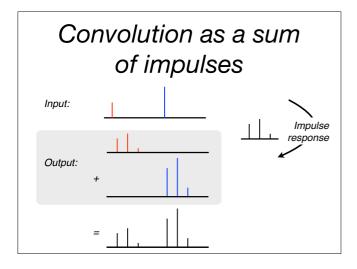
FFT Algorithm

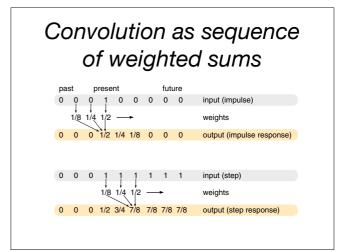
- Computes DFT (discrete Fourier Transform) of finite length input
- Very efficient for inputs of lengths $N = 2^n$
- Produces 2 outputs, each of size/length equal to that of the input: real part (cosine coefficients) imaginary part (sine coefficients)
- >> fftdemo % matlab

Convolution

Convolution

Discrete-time signal: $x[n] = [x_1, x_2, x_3, \dots]$


A system or transform maps an input signal into an output signal:


 $y[n] = T\{x[n]\}$

A shift-invariant, linear system can always be expressed as a convolution:

$$y[n] = \sum x[m] \cdot h[n-m]$$

where h[n] is the impulse response.

★ Convolution as matrix multiplication

Linear system ↔ matrix multiplication

Shift-invariant linear system ↔ 'Toeplitz' matrix

Matrix multiplication ??

A is a
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2.5 \\ 3.2 \end{bmatrix}$$
 x is a vector (2 by 1 matrix)

Matrix multiplication ??

A is a 2 by 2 matrix

2

x is a vector (2 by 1 matrix)

$$1 \times 2.5 +0 \times 3.2$$
$$0 \times 2.5 +2 \times 3.2$$

Matrix multiplication ??

A is a 2 by 2 matrix

$$\begin{array}{c} 1 \\ 0 \end{array}$$

 $0 \\ 2$

x is a vector (2 by 1 matrix)

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} 2.5 + \begin{bmatrix} 0 \\ 2 \end{bmatrix} 3.2 = \begin{bmatrix} 2.5 \\ 6.4 \end{bmatrix}$$

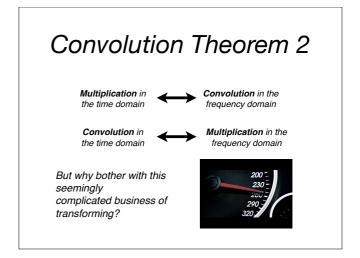
weighted sum of columns ... $ax_1 + bx_2$... should ring a bell!

★ Convolution as matrix multiplication

Columns contain shifted copies of the impulse response

Linear system ↔ matrix multiplication Shift-invariant linear system ↔ 'Toeplitz' matrix

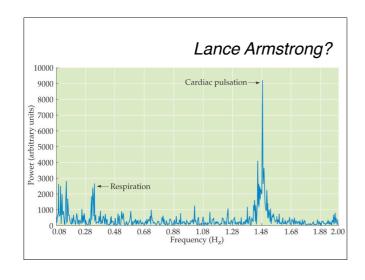
★ Convolution as matrix multiplication

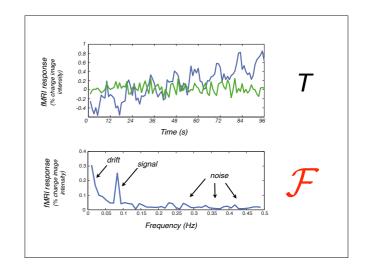

$$\begin{bmatrix} \cdot \\ 5 \\ 2 \\ -3 \\ 4 \\ \cdot \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot \\ 1 & 2 & 3 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ & & & & \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} \cdot \\ 1 \\ 2 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

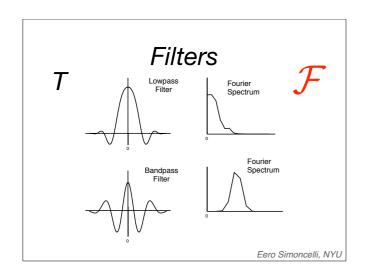
Rows contain time-reversed copies of impulse response.

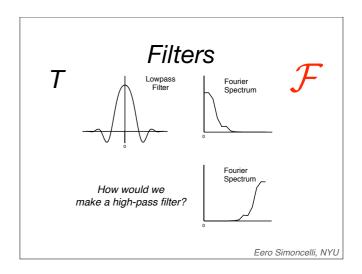
Linear system ↔ matrix multiplication

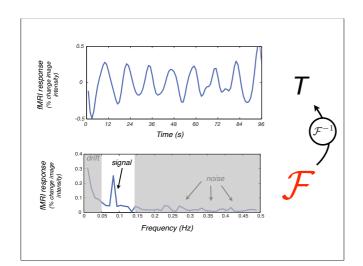
Shift-invariant linear system ↔ 'Toeplitz' matrix

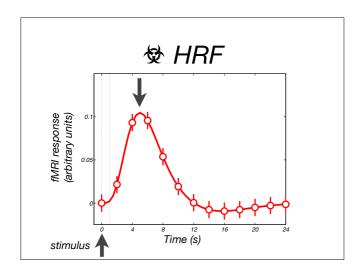

Convolution Theorem 1 Multiplication in the time domain 'Gabor' easier to calculate here easier to understand here Eero Simoncelli, NYU




For large data sets Convolution is an computationally expensive operation FFT / IFFT is very efficient Point-by-point multiplication is cheap signal, filtered signal multiply Fourier transforms


In some cases...


 ... it's easier to see periodic events, e.g. artefacts due to cardiac cycle / breathing in the frequency domain



★ Linear Algebra / FFT

- Eero Simoncelli, NYU
 http://www.cns.nyu.edu/~eero/math-tools/
 contains additional links to www / books
- MIT OpenCourseWare (video lectures)
 Mathematics, Gilbert Strang, 18.06 course
- Linear Algebra and Its Applications, Gilbert Strang, book

$$H(t) = \left(\frac{t}{d_1}\right)^{a_1} \exp\left(\frac{-(t-d_1)}{b_1}\right)$$
$$-\left(\frac{t}{d_2}\right)^{a_2} \exp\left(\frac{-(t-d_2)}{b_2}\right)$$

default params $[a_1, a_2, b_1, b_2, c] = [6 12 0.9 0.9 0.35]$

Glover. Deconvolution of impulse response in event-related BOLD fMRI. *Neuroimage* (1999) vol. 9 (4) pp. 416-29

$$H(t) = \left(\frac{t}{\tau}\right)^2 \cdot \frac{\exp(-t/\tau)}{2\tau}$$

tau = 2; % time constant
delta = 2; % time shift
t = [0:1:30]; % vector of time points
tshift = max(t-delta,0); % shifted, but not < 0
HIRF = (tshift/tau).^2 .* exp(-tshift/tau) ...
/ (2*tau); % function
figure(1), plot(HIRF, 'r'); % plot it</pre>

Quantifying Signal / Noise

Signal-to-noise ratio (SNR)

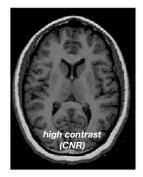
raw SNR: used by physicists + engineers to quantify image quality

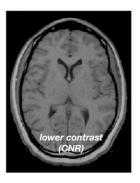
Intensity in sample

Noise outside sample (e.g. outside head)

2000

(e.g. brain)

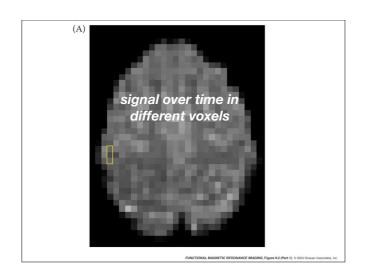

/

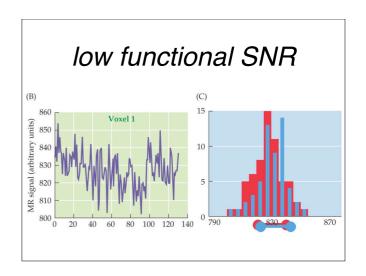

100

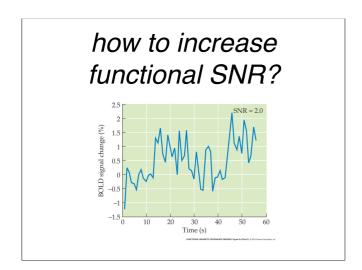
Contrast-to-noise ratio (CNR)

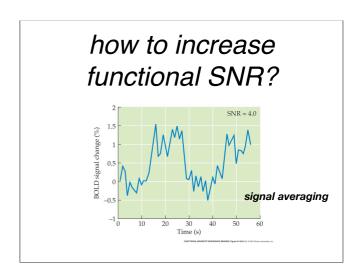
 ${f CNR}$: e.g. how good is ${f T}_1$ contrast between white matter (WM) and gray matter (GM) – take two small regions of interest

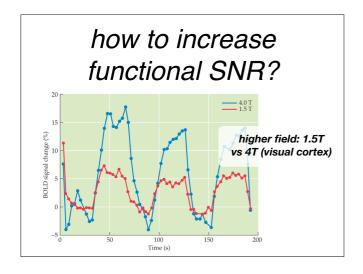
	mean GM	mean WM	noise (σ)	cnr
image 1	150 1	250	100	х
image 2	60 1	70	5	?




functional signal-tonoise ratio


functional SNR: (sometimes called functional CNR)


signal: difference between two states of the brain caused by experiment


noise: variability in those states over time...

Summary

- recap: linear systems
- Matlab
- simulated block design data
- drift + (high-frequency) noise
- Fourier domain, convolution
- raw SNR, CNR, functional SNR