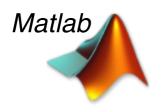
functional Magnetic Resonance Imaging – Methods

Denis Schluppeck



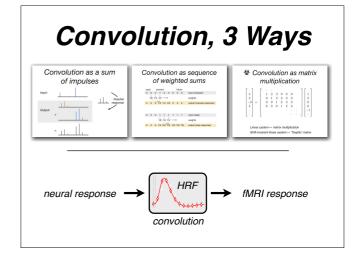
Visual Neuroscience Group University of Nottingham, UK

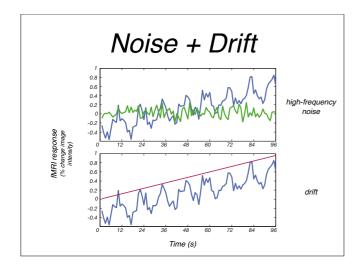
3/4

Next 3 2 lectures

- Spatial and temporal properties of fMRI (+ linearity, convolution)
- 2. Signal and Noise (+ Fourier domain, convolution)
- 3. Preprocessing of fMRI data (+ common software tools, registration)
- 4. Statistics + experimental design (+ linear regression, GLM, multiple comparisons)

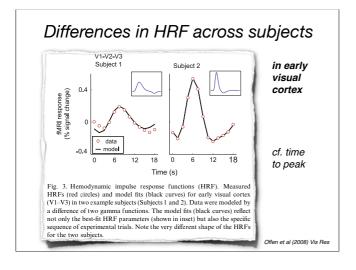
- >> demo % opens demo window
- >> help stats % statistics toolbox
- >> help images % image proc toolbox
- >> why % Provides succinct answers to almost any question.


Recap: last lecture

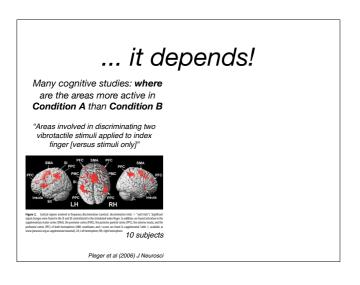

Data: indexing

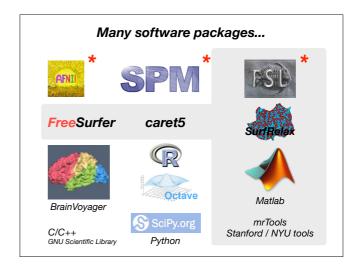
- multi-dimensional (n-dimensional) arrays
- we can **slice** data in different ways, e.g.
- >> data(:,:,12,1)
 % get image at z=12 at t=1
 image processing, spatial filtering, ...

>> data(1,1,12,:)
% get timeseries at [1,1,12]
"voxel-wise" statistics, temporal filtering, ...



Sources of Noise


- 1. Intrinisic/thermal noise: in subject + hardware
- 2. **System noise:** imaging hardware; e.g. scanner drift, small changes in B_0 over time, ...
- 3. Subject motion & physiological noise: swallowing, respiration, heartbeat, ...
- 4. Non-task related neural variability: e.g. attentional state of subject, coffee?, ...
- 5. ... if averaging across subjects: differences in HRF can introduce *intersubject* variability


inter

intra

Bird's eye view:
What are we trying to achieve?

Steps in Analysis

- Get data off scanner & into right file format PAR/REC, Nifti, Analyze, DICOM, MINC
- 2. **Preprocess** (motion-correction, slice-time correction, filtering, ...)
- 3. Do some statistics to get a statistical map
- 4.? Register / combine data across subjects
- 5. **Render maps** in different formats (on high-resolution anatomy, flat maps, ...)
- 6.**? Plot curves**, compare data + fits, look at data in many different ways, ...

Get data off scanner

- 1.... not always as trivial as you might think
- 2. PAR/REC is a Philips data format that can handle complicated data (>1 stacks, echos, mag + ph, ...)
- 3. many fMRI analysis tools expect NIFTI format

ds1\$ ptoa

conversion tool written by **Dr Paul Morgan** (UoN, Academic Radiology; now MUSC, South Carolina)

PAR/REC

- data comes in pairs of files: fname.PAR, fname.REC
- the PAR part is a text file that contains information about the session, how slices were prescribes, TE, flip angles, reconstruction sizes,...
- the REC part is a binary file that contains the data

Text editor

UNIX Terminal

THE REPORT WHEN THE PROPERTY OF THE PROPERTY O

ds1\$ more fname.PAR

NIFTI/Analyze

- data comes in **pairs** of files: fname.hdr, fname.img
- or as a single file (header is inside file): fname.nii
- or even compressed: fname.nii.gz
- less information than in PAR/REC files, but more programs use it

Text editor

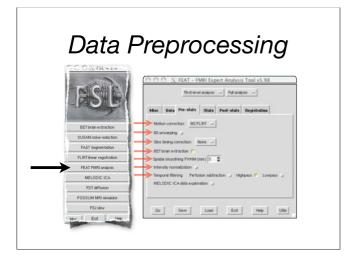
UNIX Terminal

ds1\$ fslinfo fname.img
ds1\$ fslhd fname.imq

☆ Terminal

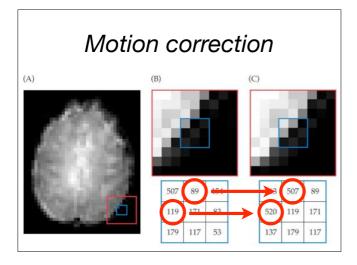
ds1\$ <some unix command>

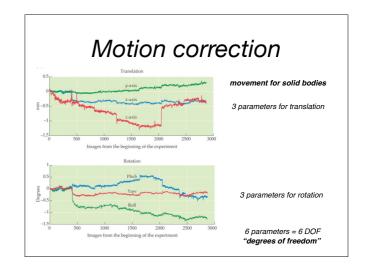
ds1\$ <file that contains a bunch of unix commands>


- many analysis tools: can type a command in a shell/terminal, rather than clicking buttons.
- for large datasets or repetitive tasks, it is often faster to write a script than to click the mouse 10⁶
- e.g. all commands for FSL tools can be accessed that way

Data Preprocessing Interleaved acquisition Recording of Image MR signal reconstruction Correction Correction

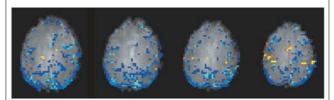
case study FMRIB Software library (FSL)


Data Preprocessing


- most software packages implement a very similar set of preprocessing steps (because they make sense)
- ... may be called different things (specific jargon)
- check SPM, BrainVoyager, AFNI documentation for details:
 - links on my webpage http://tinyurl.com/5kcvqv
 - Google: SPM, BrainVoyager, AFNI

Data Preprocessing

- Aim 1: reduce unwanted variability in the data (this increases functional SNR)
- Aim 2: prepare data for statistical analysis (e.g. spatial smoothing can reduce the effective number of statistical tests).
- Additional aim: get data ready for display / averaging across subjects



Motion Correction

- AIR automated image registration (Woods)
- SPM (Ashburner)
- FLIRT / FSL (Jenkinson)
- Robust alignment (Nestares & Heeger)
- ...all try to minimize some error term between a reference image (say, the first image acquired) and the image at each other time point.

! By definition the algorithm finds a minimum - make sure the algorithm's solution is reasonable.

Motion Correction

Typical edge artefact in statistical images, due to (residual) motion...

Avoid Motion!

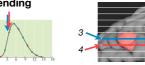
Because head motion is one of the biggest problems, make sure you have little

B₀ unwarping

- correct geometric distortions in EPI data (caused by inhomogeneities in local magnetic field) fugue
- data for this (phase images) often show wrapping, i.e. jumps from 2π back to 0(need to correct for those jumps first...)

prelude

your Physics colleagues have figured out a faster way:

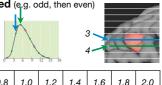

Olivier Mougin,

fieldmap (image intensity ∝ local field) units: [Hz], [rad/s], [T]

http://www.fmrib.ox.ac.uk/fsl/fugue/

Slice (acquisition) time correction

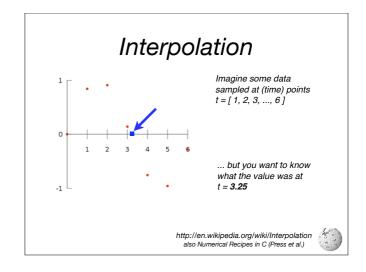
- example: repetition time (TR) 2s, 10 slices
- slice order a- / de-scending

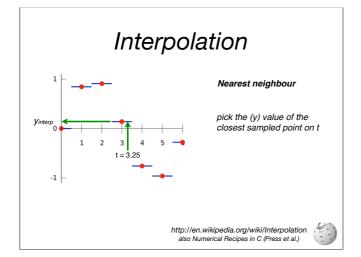


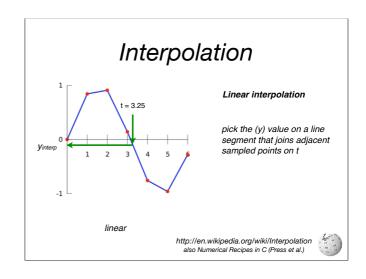
Time (s)	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
ascending	1	2	3	4	5	6	7	8	9	10

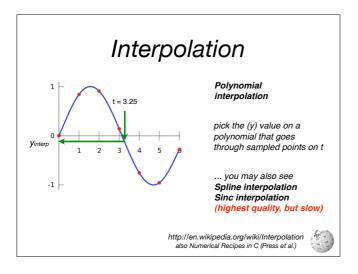
0.2s

Slice (acquisition) time correction

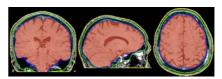

- example: repetition time (TR) 2s, 10 slices
- slice order interleaved (e.g. odd, then even)




Time (s)	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
interleaved	1	3	5	7	9	2	4	6	8	10

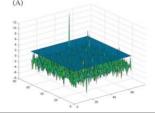

Slice (acquisition) time correction

- 1. Do nothing!
- 2. Deal with difference in timing at the time of statistical analysis (bookkeeping nightmare?)
- 3. Resample / interpolate data to "realign" data in time. Then proceed as before, ... (but this step might **blur** your data)

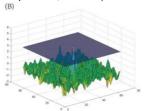


Brain extraction

- remove skull / skin / fat before further processing (which are a priori not interesting for most fMRI)
- may improve alignment across subjects (but! within suject alignment... there is information in the skull!)


S.M. Smith. (2002) Fast robust automated brain extraction. HBM, 17(3):143-155

http://www.fmrib.ox.ac.uk/fsl/bet2/


Spatial smoothing

- 1. reduce noise in images
- 2. introduce **known** spatial correlations, e.g. with gaussian blurring (gaussian random fields, lecture 4)
- 3. ...reduce number of 'independent' samples in image (multiple comparisons, lecture 4)

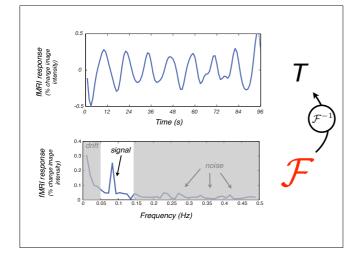
Spatial smoothing

- 1. reduce noise in images
- 2. introduce **known** spatial correlations, e.g. with gaussian blurring (gaussian random fields, lecture 4)
- 3. ...reduce number of 'independent' samples in image (multiple comparisons, lecture 4)

愛 Terminal

ds1\$ fslmaths

ds1\$ fslstats


ds1\$ fslsplit

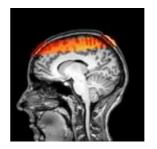
ds1\$ fslmerge

ds1\$ fsl<bla>

Temporal filtering

- 1. If we know the characteristics of **unwanted variability** (noise), then we can try to filter it out.
- 2. trend-removal, high-pass filtering (to get rid of drift)
- 3. smoothing, low-pass filtering (to get rid of high-frequency ripples)

Temporal filtering

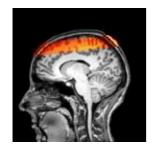

- 1. If we know the characteristics of **unwanted variability** (noise), then we can try to filter it out.
- 2. trend-removal, high-pass filtering (to get rid of drift)
- 3. smoothing, low-pass filtering (to get rid of high-frequency ripples)

Make sure not to remove signal...

Check that filtering doesn't introduce statistical dependencies that might hurt you later...

Registration / Flat maps

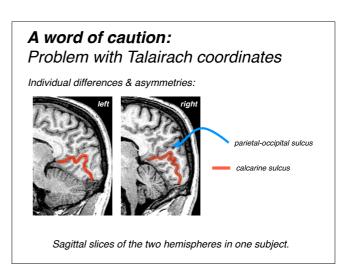
Aligning across sessions (same subject)

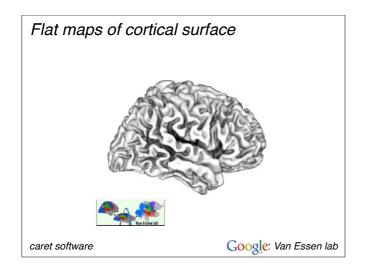


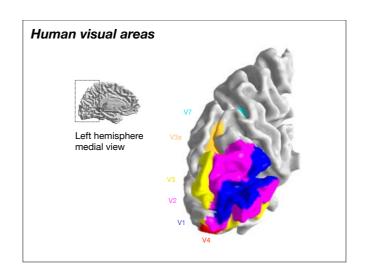
EPI data is blurry

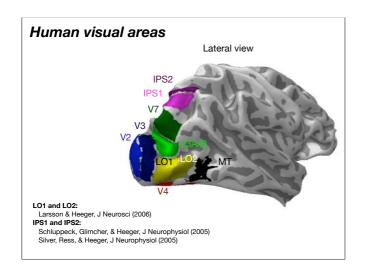
image contrast different: anatomy and functional data

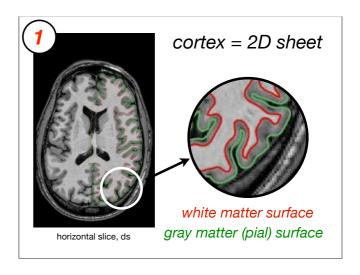
consider collecting anatomy data with the same slice prescription

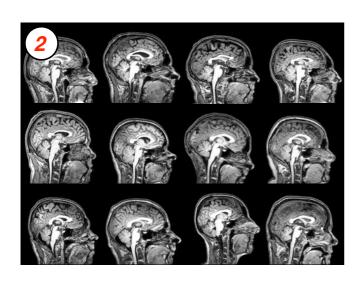

Aligning across sessions (different subject)

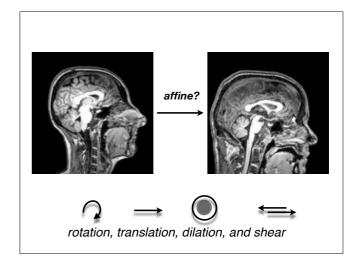


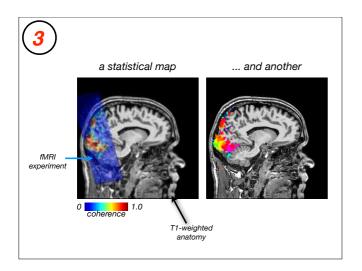

?

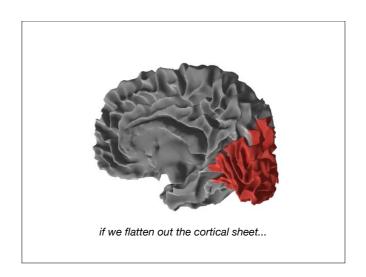


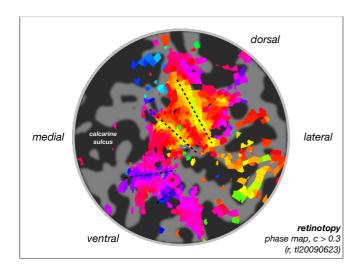

Transforming to Talairach coordinates Original Find landmarks anterioriposterior commisure AP, LR, inf-sup borders Montreal Neurological Institute Warp Find landmarks anterioriposterior commisure AP, LR, inf-sup borders

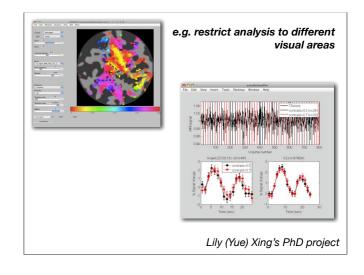


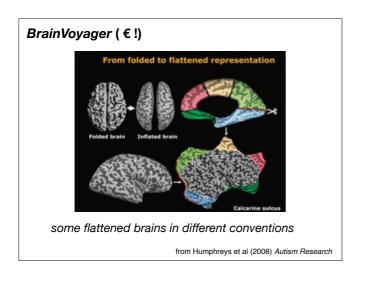


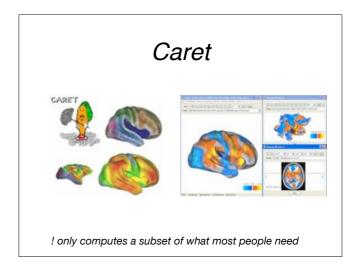


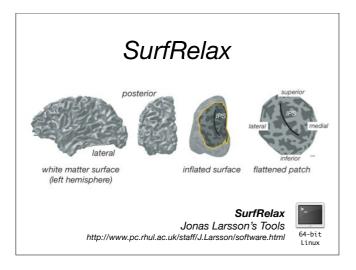


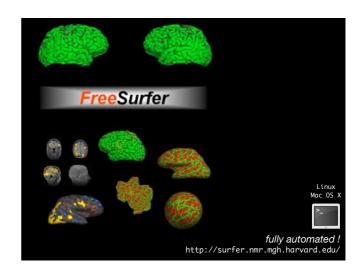


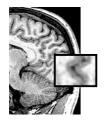


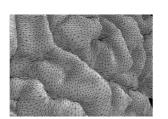












volume versus surface

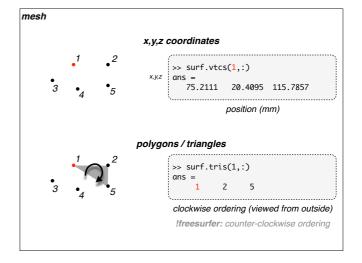
pixels / voxels in 3D 'intensity at a point' (image)

vertices in 3D, connected to form triangles / polygons (mesh)

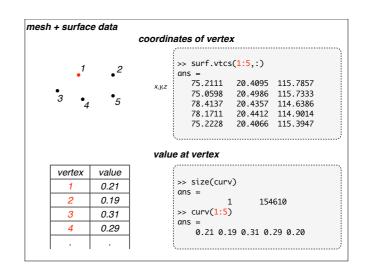
volume versus surface

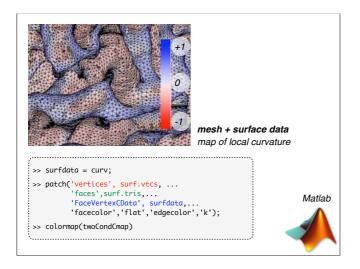
- for a volume we need 3 "indices" to uniquely identify a voxel (x,y,z)
- 4 for timeseries (x,y,z,t)
- multi-dimensional arrays
- we can slice these data in different ways:
- >> data(:,:,12,1) % get slice z=12 at t=1
- >> data(32,:,:,1) % ??
- >> data(1,1,12,:) % get timeseries at [1,1,12]

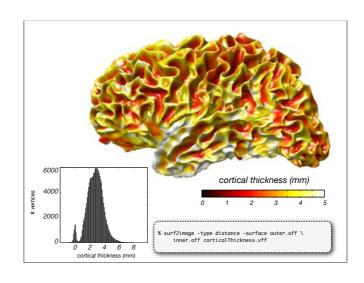
volume versus surface

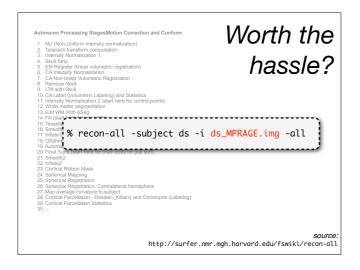



```
>> surf = loadSurfOFF('tl_left_WM.off')
surf =


filename: 'tl_left_WM.off'
   Nvtcs: 154610
   Ntris: 309216
   Nedges: 0
   vtcs: [154610x3 double]
   tris: [309216x3 double]
>> curv = loadVFF('tl_left_Curv.vff');
```


Justin Gardner's demo


http://tinyurl.com/lenl5d



What do I need?

- T1-weighted anatomy with good contrast
- a computer with Linux / Mac OSX (freesurfer runs SPMMRC incl. morgana)
- correctly set-up your UNIX .bashrc file
- ~12h compute time for 1mm³ data set
- ... a bit of patience, if things break
- demo: Matlab, data from Justin Gardner's demo on mrTools wiki: http://tinyurl.com/lenl5d

For an overview of tools

60+ tools compatible with NIFTI-1

NITRC website http://www.nitrc.org/

Summary

- recap
- Matlab (... + Unix, terminals, ...)
- software packages
- preprocessing steps, how, why?
- registration / flat maps