functional Magnetic This lecture
Resonance Imaglng 1. Spatial and temporal properties of fMRI

(+ linearity, convolution)

— Methods 2. Signal and Noise

(+ Fourier domain, convolution)

Denis Schluppeck )
3. Preprocessing of fMRI data
(+ common software tools, registration)
4. Statistics + experimental design
e + linear regression, GLM,
“35: Visual Neuroscience Group ( Itiol g . )
PR S University of Nottingham, UK 4/4 multiple comparisons

Matlab

Quick recap:
-+ if ~geck - preprocessing
http://tinyurl.com/2a3woex — links to tutorials [ + S p a t I' a / f I' It e rl' n g]

>> if (geek || keen || phd==fmri )

A http://web.mit.edu/18.06/www/Course-Info/Tcodes.html
help Tcodes; help project; help 1sq;

Many software packages...

Data Preprocessing

Talairach
Interleaved acquisition space I?
oo E an
emporal
on
moothin

BrainVoyager Metiab f
mrTools slice acquisition;

C/C++ Stanford / NYU tools interpolation
GNU Scientific Library Python




File formats...

two file formats used here: PAR/REC, NIFTI/Analyze

PAR/REC

© data comes in pairs of files: fraome.PAR, frame.REC

« the PAR partis a text file that contains
information about the session, how siices were
prescribes, TE, fip angles, reconstruction sizes,

« the REC part is a binary file that contains the data

Text editor UNIX Terminal
ds1$ more fname.PAR

PAR:

NIFTI/Analyze

 data comes in pairs of files: frame.hdr,

« or as a single file (header is inside file): fn
 or even compressed: frane.ni gz

© less information than in PAR/REC files, but more
programs use it

Text editor UNIX Terminal
“hdr $ fslinfo fname.ing

§ fsthd fname. ing

on scanner...

...most tools use this

File formats...

two file formats used here: PAR/REC, NIFTI/Analyze

PAR/REC

 data comes in pairs of files: frome.#A%, frase.REC

« the PAR part is a text fil that contains
information about the session, how slices were
prescribes, TE, fip angles, reconstruction sizes,

« the REC partis a binary file that contains the data

Text editor UNIX Terminal
ds1$ more fname.PAR

PAR:

NIFTI/Analyze

© data comes in pairs of files: frane.hdr

« or as a single fle (header is inside file)
© or even compressed: frane.n gz

© less information than in PAR/REC files, but more
programs use it

Text editor UNIX Terminal

-hdr 515 fslinfo fname.ing

4515 fslhd Frame.ing

on scanner...

\-> ds1$

...most tools use this

ptoa -J

Motion correction

... avoid, rather than deal with!

Avoid Motion!

Motion correction

movement for solid bodies

3 parameters for translation

3 parameters for rotation

6 parameers = 6 DOF
“degrees of freedom”

what motion artefacts tend to
look like...

Spatial filtering

1.6mm inplane
128 x 128 matrix
no filtering

Spatial filtering

... done by convolving image (at each timepoint)

with a filter / kernel — often Gaussian
2.3548

(x)
FWHM fwhm = 2v2In2c0

fmax

12 * frax

X X X

see also: http://en.wikipedia.org/wiki/fwhm

Spatial filtering

1.6mm inplane
128 x 128 matrix
1mm fwhm gauss




Spatial filtering

1.5mm inplane
128 x 128 matrix
3mm fwhm gauss

Spatial filtering

1.5mm inplane
128 x 128 matrix
10mm fwhm gauss

Experimental design
+ Statistics

many slides courtesy of D.J. Heeger, NYU

Spatial filtering

1.5mm inplane
128 x 128 matrix
5mm fwhm gauss

Spatial filtering

improves SNR

required for some statistics (Gaussian Random Fields)
increases overlap between subjects

does not preserve edges (blurs in “non-GM tissues”)
combines across sulci (anatomy!)

reduces peak values (e.g. when blurring statistical images)

Possible designs

¢ Block design: fixed sequence of different blocks

[A B A B, ..] alternating

[A, rest, B, rest, A, ...] alternating with ‘null’

[A C,B A A C,D,rest A ...] randomized

e Event-related designs: different type of ‘trials’
are presented in randomized order

[Ar,BrB,.. ] r={2-5s} rapid, event-related

ArBrB,.. ] r={12-15s}  sparse

® Mixed designs: blocks (states) containing
different trials / events.




Which to choose?

TABLE 11.1 Ad ges and Disad of Each Type of fMRI
Experimental Design
Advantages Disadvantages
Blocked Excellent detection power Poor estimation power
Useful for examining state Insensitive to shape of hemo-
changes dynamic response
Simple analysis Potential problems with
selection of conditions
Event-related Good estimation power Can have reduced detection
Allow determination of change power
from baseline Sensitive to errors in predicted
Very flexible analysis strategies HDR
Best for post hoc trial sorting Refractory effects can influence
analyses
Mixed or semi- Best combination of detection Most complicated analyses
random and estimation Relies on assumptions of
Can dissociate transient and linearity
sustained components of
activity

Example:
an event-related
experiment

‘Association cortex’

Has been implicated in

modeled fMRI response

Picking the right timing
for block designs...

drift! efficient stupid!

14 T 14 155 4 2s
12 12 6
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8 8 4
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see e.g. Birn, et al. (2002) Neurolmage

Posterior Parietal Cortex
A ,:'T (

‘Association cortex’

‘Association cortex’

Has been implicated in

Philoprogenitiveness (1820’s)




‘Association cortex’

Has been implicated in

Philoprogenitiveness (1820’s)
spatial processing

planning of eye movements
working memory

decision making, &c.

LIP - lateral intraparietal

+ LIP is a candidate for

localization

» Many neurons (60%+) show
delay period activity

+ Lateralization?

+ Topographic organization?

Posterior Parietal Cortex

‘Association cortex’

Has been implicated in

Philoprogenitiveness (1820’s)
spatial processing

planning of eye movements
working memory

decision making, &c.

But no easy way to localize functional subdivisions

LIP - lateral intraparietal

Delayed Visually Guided

+ LIP is a candidate for
localization

L]

I

+ Many neurons (60%+) show
delay period activity

+ Lateralization?

+ Topographic organization?

Pare & Wurtz (1997), J Neurophysiol. 78(6)

LIP - lateral intraparietal

Delayed Visually Guided

Prsiiract

+ LIP is a candidate for o -
localization —_— i

» Many neurons (60%-+) show

Memory Guided

delay period activity ;
Lateralization? i ‘
+ Topographic organization? [ I ‘
Target Onset Saccade Onset

Pare & Wurtz (1997), J Neurophysiol. 78(6)

Block-design version

/N

peripheral target  delay, distractors fixation dims, fixation reappears,
~10°, 250ms 3000ms 250ms, saccade return saccade,
1000ms

Sereno et al., 2001
Schluppeck et al., 2005




Topographic areas of human
posterior parietal cortex

superior

Issues

]

"

|

attention intention peri- gain fields
motor plan  saccadic

Estimating Sustained
Activity

1. Pick a region of interest
2. Make a simple model of neural activity...
3. ... then model the fMRI response

4. Estimate contributions to fMRI response by linear
regression

5. Compare fMRI responses and model fits

Schluppeck et al., 2006

Topography: Conclusions

» Two new topographic cortical areas (IPS1, IPS2)
in PPC beyond V7
... Swisher et al. 2007, Wandell et al. 2007, Konen & Kastner, 2008

* Responses biased for contralateral visual field

* Responses reflect more than pure delay period
activity

» Objective + useable definition of parietal areas

Is there sustained activity?

1 return
: saccade
. corrective
fixation dims saccade
saccade
20 target locations, left/right

peripheral target

delay period: 3s - 15s
* intertrial interval: 10.5s — 15s
* 4 subjects

+ 2 scanning sessions
[~192 trials in 16 scans]

Estimating Delay Period Activity




Estimating Delay Period Activity

‘neural’ v S

activity
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‘HRF’
NS

Estimating Delay Period Activity
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Measured fMRI response

) ) . ) s1, right IPS2
0 5 10 15 20 25 30

fMRI response

(% signal change)

Subject 1, right IPS2

data: mean + se

!
delay period
0.5
model: mean + sd
0

o 10 20 30
Time (s)

Subject 1, right IPS2

~
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fMRI response
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Estimation

iTunesU, MIT Open Course Ware, online
search for “linear regression”, “linear algebra”,
UCLA Advanced Neuroimaging Summer School

data = linear
combination of effects

other explanatory

response due to Mean variables

stimulus on/off \ l l l
[ ] [0.72] (17
Y2 0.90 1
Y3 0.65 1

Measured || = [0.20] p1+ [1| p2+...

0.01 1

General Linear Model

Nx1 vector NxL matrix Lx1 vector
(%]
°
=
o
° known matrix ,
i b1
Measured | §| _ | with more rows i
data (y) o than columns :
5 ® P
2
©
(]
=

N: number of time points in the time series
L: number of regressors in the design matrix

Design matrix

p1 is amplitude of

) Mean ) modulation of
Block alternation Drift underlying neural
(stimulus on/off) \ l activity
11 -1 i
iR 1 -1+2/n
Convolve only the L1 ’
relevant EVs (1st col 0 1 3
in this example) 0 1 § 3 D
with the HIRF, not g 1 58
the nuisance EVs. 5 3
£~ PL
Qo
0 1 +1

In FSL / SPM

time: 10s ticks ™l 1
i
o u E design matrix is often
indicates scale of * represented as an image
high-pass filter *
i low numbers: dark
*’ high numbers: light
H !
[ | !
[ | —}
|-
c1 u1n
73 ” example: 12s on, 12s off
regressors TR 1.55, 10 cycles

General Linear Model

Nx1 vector NxL matrix Lx1 vector

1%}

2

o

o)

° known matrix Pl -
Measured | & with more rows ] matrix form

data (v) s| = than columns : — X_

g *) L y p

1%}

3

=

N: number of time points in the time series
L: number of regressors in the design matrix




How to solve for p?

Unlikely to find exact

solution, because we

have more equations
than unknowns.

... where popt are the
(best) parameter
estimates and # means
pseudoinverse.

One parameter example

Nx1 Nx1

unknown
parameter Solve...

... where x, y are vectors
and p is a number.

Measured time series
Il
HIRF * block alternation
=]

One parameter example

Nx1 Nx1

unknown
parameter

Measured time series
I
HIRF * block alternation
=B

A Least-squares regression (for ref)

Solution 3 (using the orthogonality principle). The error vector for the
best p is perpendicular to x:

z-e

0
- (pZ—7)=0.

measured data
‘direction of model’
best fit (scaled by p)

Multiple parameters

pseudoinverse (X)
... where y, p are vectors o *
and X is the known matrix. >> p = pinv(X*y
and []" is transpose and s> p=X\y

[} is the matrix inverse.

2 Multiple parameters

projection matrix pseudoinverse (X)

... where y, p are vectors - *
and X is the known matrix. >> p = pinv(X)*y
and [-]" is transpose and s> p=X\y

[} is the matrix inverse.




! Orthogonality

(XTx)

* Make sure the design matrix makes sense!
e s X"X always invertible? If not, why not?

* What is the interpretation for the values corresponding to
each element of popt? Is the meaning of each value
independent of the other elements?

Event-related design matrix

Trial type 2
Time of each 1
type 1 trial
~ 10 -
00 p1is ‘neural’ response to
0 1 trial type 1
1o /
01 P
0 0 .
pL
_O 1 -

Inference

Event-related fMRI experiment

Trial type 1
Trial type 2
2

2
Time

Response amplitude

Trial type 1 Trial type 2

Event-related analysis (2)

® can also estimate stimulus-locked (trial-triggered)
responses for different event types without
making assumptions about the HIRF

® similar matrix-algebra magic

e Not enough time to cover this here, but if you are
interested, let me know...

Simple (block) design

* Example visual experiment:

e Alternate Xs of (A) left visual field with Xs of (B)
right visual field [repeat, say, 10 times]

dots, gratings, movies, ...

A(lef) B(righy A B

Time




fMRI response
(% signal change)

fMRI response
(% signal change)
o
L

Example voxel in visual
cortex

o

Time (s)
stimulus in
left visual field

Average A / B block for this voxel

mean+SEM
(10 repeats)

Time (s)

fMRI response
(% signal change)

fMRI response
(% signal change)

Average A / B block for this voxel

mean+SEM

(10 repeats)
1
0 24
Time (s)
Average A / B block for this voxel
mean+SEM
71 (10 repeats)
A
04
B

Time (s)

# of timepoints
(measurements)

% signal change at timepoint

...Is this a “significant”
response?

® Are the distributions different from each other?
e at each voxel, calculate a statistic ( e.g. Student’s t)
e calculate means for 2 conditions mean(A), mean(8)

¢ and standard error of differences between them
sqrt( [var(A)+var(B)]./n ) % n = #samples in each group

X, - X
t = # R s2 43
e

5X, - X




...Is this a “significant”
response?

* Are the distributions different from each other?
e at each voxel, calculate a statistic ( e.g. Student’s t)
e calculate means for 2 conditions mean(a), mean(B)

* and standard error of differences between them
sqrt( [var(A)+var(B)]./n ) % n = #samples in each group

@ difference in means
2 .2
t = _ . [s5itss

J— SX,—X, =

SX,—Xs ) SE of difference

... highly unlikely to be due to chance

0.5

t distribution

158 dof
0.4

0.3

0.2

probability density

0.1

. |
8 6 4 -2 0 2 4 6 8

t-value

£ 1 - tedf( 5.330, 160-2) is area under curve from 5.33 —oo

cerebellum
grayscale: signal intensity
-10 -5 0 5 10
t-statistic
higher higher
response in response in

Bthan A A than B

Statistical significance

mA = mean(A); % => +0.5134

mB = mean(B); % => -0.5145

n = 80; % # of samples in each group

semAB = sqrt( ( var(A)+var(B) )./80 ); 0.1927
t = (mA - mB)./semAB; 5.330

® could we have observed that specific t value by
chance? (inference)

® null hypothesis Ho: difference in means is 0
degrees of freedom: 2n-2

p =1 - tcdf( 5.330, 160-2) % cumulative t
1.7e-7 = 0.00000017 i.e. reject Ho

1.re-calculate at each voxel in the data set

to get a statistical parametric map (spm)
[ actual analyses use general linear model / multiple
linear regression / non-parametric tests ]

1.re-calculate at each voxel in the data set

to get a statistical parametric map (spm)
[ actual analyses use general linear model / multiple
linear regression / non-parametric tests |

2.decide on a scheme for thresholding the
statistical image (“what is significant”)

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... that’s basically it




1.re-calculate at each |n the data set
togeta statlstlca&ﬁ etric map (spm)

[ actual analyses u eral linear model / multiple
linear regressw -parametric tests |

2.decide on a scheme for thresholding the
statistical image (“what is significant”)

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... that’s basically it

Statistics

1. How well does the model fit the data?

2. What are the confidence intervals/error bars on the
parameter estimates?

3. Are the parameter estimates different from zero?
Different from each other?

4. Which of the regressors contribute to fitting the
data?

GLM: contrasts

visual

e calculate individual statistical
maps

audio

® compare: by contrasting them

® e.g.
[1 0] for ‘responds to visual’
[0 1] for ‘responds to audio’

[1 -1] for ‘responds more to
visual than audio’

audio

for a v clear explanation:
http://www.fmrib.ox.ac.uk/fsl/feat5/glm.html

1.re-calculate at each W in the data set
to get a statistical etric map (spm)

’
[ actual analyses u eral linear model / multiple
linear regressio -parametric tests |

-

2
2.decide on a scheme fo @?olding the
s sig

statistical image (“what i @«&”)

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... that’s basically it

GLM: calculate t

e ... the ratio of mean to
standard error of our 05

parameter estimates (p, or
beta) =t

0.2

® error: look at residuals

probability density

® do inference on these t

?

|

-8 6 4 2 0 2
t-value

values: is the t observed at
this voxel large enough?

4 6 8

“Thresholding”

e either voxelwise or taking into account the fact
that voxels are not independent (clustering, GRF).

e voxelwise: corrected versus uncorrected?

® Because we are computing many statistical tests,

we will get many false positives tens of

thousands!

This is called the multiple comparisons
problems




Kinds of error...

data say...

signal signal
present absent

. false ¢ controlled by
YES l positive alpha
... We e.g. p<0.05
conclude
NO miss cor.rect
reject

o: false positive = false alarm = Type | error
B: false negative = miss = Type Il error

Corrections for
multiple comparisons

e Bonferroni: divide alpha by number of tests...
0.05 (5e-2) becomes 0.000005 (5e-6) with 10,000
tests .... very conservative.

® Resel: resolution elements. After smoothing,
roughly the number of independent elements in
data set (use this instead of voxels)

e Gaussian Random Field theory

Kinds of error...

data say...

signal signal
present absent

. false ¢ controlled by
YES fl positive alpha
... We e.g. p<0.05
conclude
NO miss CO(rect
reject

With 10,000 tests, we may have
500 false positives

Multi-subject analysis

® Normalize brains anatomically: affine, e.g.
Talairach, MNI, or non-rigid transformations...

® Fixed-effects analysis: assume brains are “the
same” across subjects (more sensitive)

¢ Random-effects: allow between-subject
variability in pattern of responses as another factor
in your analysis (more conservative, but more likely
to be “true”)

(A)

Subjects’ time courses Combined time course Combined

statistical map
- \ -

Fixed \ . 8¢
effocts f/ﬁmf% A
(B)

Subjects” time courses Subjects’ statistical maps Combined

7 statistical map

Random pg

effects

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 12:20 © 2004 Sinaver Assocte, I

Some thoughts...




Beware of...

e . statistical thresholds
e ... circular reasoning

¢ ... finding the “cortical locus for
cognitive ability X”

Alternative

...plot parameter estimates with error bars

Average Neural Activity
(spikes/s/neuron)
fMRI Response
(% BOLD signal)

0
0 10 20 30 40 50 60 70

Contrast (%)

Heeger et al, Nature Neurosci (2000)

Beware of statistical
thresholds

stimulus contrast

> high

Circular reasoning

1. Hypothesis: that there is a cognitive process called groking
that is localized to a functionally specialized brain area.

2. Design an experiment with two tasks, one of which you
believe imposes a greater load on groking.

3. Run the experiment and find sure enough that there is a
brain area that responds more strongly during high grok load
trials then low load trials.

What can you conclude from this?

Case study: visual area MT/
V5 and motion perception

Geoff Boynton
Alex Huk

Cortical area MT is specialized
for visual motion perception

* Neurons in MT are selective for motion direction.

® Neural responses in MT are correlated with the perception of
motion.

* Damage to MT or temporary inactivation causes deficits in
visual motion perception.

e FElectrical stimulation in MT causes changes in visual motion
perception (Newsome).

e Computational theory quantitatively explains both the
responses of MT neurons and the perception of visual motion.

* Well-defined pathway of brain areas (cascade of neural
computations) underlying motion specialization in MT.




Additional Resources

e The Oxford FMRI book

® FSL course (Oxford, all lecture materials online)
http://www.fmrib.ox.ac.uk/fslcourse/

e SPM book:
http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/

® Random Field Theory tutorial MRC-CBU
(Cambridge)
http://imaging.mrc-cbu.cam.ac.uk/imaging/
PrinciplesRandomFields

e Additional slides [will be on website]...

Filter sizes

sigma [mm] Gl
g (~ 2.35 sigma)
2.3548
1 2.35
3 7.10
fwhm = 2v2In2c
5 11.77
0.59 1
1.77 3
2.94 5
5.89 10
standard full-width
deviation at half-maximum

Thanks + see you
tomorrow and next
term!

Least-squares regression (for ref)

Find p to make (xn p) as close as possible to yn for all n.
That is, choose p to minimize:

N
min Y (yn = pn)®

n=1

Or, in vector notation:
min |7 — p&|?
P

Solution 1 (using calculus). Take the derivative of the above
expression, set it equal to zero, and solve for p:

DPopt = —7=-

Least-squares regression (for ref)

Solution 2 (using geometry). Find the scale factor p such that the
scaled vector p x is as close as possible (in Euclidean distance) to y.
Geometrically, we know that the scaled vector should be the projection
of y onto the line in the direction of x:

Least-squares regression (for ref)

Solution 3 (using the orthogonality principle). The error vector for the
best p is perpendicular to x:




Simple example

y =

3 1 0 . .

; - pl = |0|p1+ |1|p2
L.l] L) 0] p2 0 .

Simple example
y = Xp

3 - 10 o 3 ) 1 0

|:0?1] B 8 é] [pz} «> 0?1 = 8]71 + (l)pg

Simple example

y = X
0
]
0 p2

kel

3
2
0.1

1
0
0

0
1
0

p1+ |1 p2

o O =

-

parameters
that give
best fit

Simple example

- Pl 1 0
[ 1 [8 (1)} P2 = 8p1+(1)p2
ST
Simple example

y = Xp

) Lo p1 3 1 0
Lﬂ i 8 (1)} LJH 0?1 - 8p1+(1)p2
| R

SR SFIHE

Simple example

1
0
0

0
1
0

p1+ |1 p2

parameters

that give least squares
best fit solution




Simple example

y = Xp
3 10 3 1
_ P _
21 = |0 1 [ ]4_> 2 =10
0.1 0 of P2 0.1 0
{2
10 3
oo me- o 1
0 0 0
parameters
that give least squares e X
best fit solution ES¥TW




