

This lecture

- 1. Spatial and temporal properties of fMRI (+ linearity, convolution)
- 2. Signal and Noise (+ Fourier domain, convolution)
- 3. Preprocessing of fMRI data (+ common software tools, registration)
- 4. Statistics + experimental design (+ linear regression, GLM, multiple comparisons)

Quick recap: preprocessing [+ spatial filtering]

1.5mm inplane 128 x 128 matrix 1mm fwhm gauss

Spatial filtering

1.5mm inplane 128 x 128 matrix 3mm fwhm gauss

Spatial filtering

1.5mm inplane 128 x 128 matrix 5mm fwhm gauss

Which to choose? TABLE 11.1 Advantages and Disadvantages of Each Type of fMRI Experimental Design		
Blocked	Excellent detection power Useful for examining state changes Simple analysis	Poor estimation power Insensitive to shape of hemo- dynamic response Potential problems with selection of conditions
Event-related	Good estimation power Allow determination of change from baseline Very flexible analysis strategies Best for post hoc trial sorting	Can have reduced detection power Sensitive to errors in predicted HDR Refractory effects can influence analyses
Mixed or semi- random	Best combination of detection and estimation Can dissociate transient and sustained components of activity	Most complicated analyses Relies on assumptions of linearity

Picking the right timing for block designs... drift! efficient stupid! Î Ť ſ 14 12 10 modeled fMRI response ~~~~~~

Time (s)

Posterior Parietal Cortex

'Association cortex'

80

see e.g. Birn, et al. (2002) NeuroImage

Posterior Parietal Cortex

'Association cortex' Has been implicated in

Posterior Parietal Cortex

'Association cortex' Has been implicated in

Philoprogenitiveness (1820's)

Posterior Parietal Cortex

'Association cortex' Has been implicated in

Philoprogenitiveness (1820's)

spatial processing planning of eye movements working memory decision making, &c.

Posterior Parietal Cortex

'Association cortex' Has been implicated in

Philoprogenitiveness (1820's) spatial processing planning of eye movements working memory decision making, &c.

But no easy way to localize functional subdivisions

LIP - lateral intraparietal

- LIP is a candidate for localization
- Many neurons (60%+) show delay period activity
- · Lateralization?
- Topographic organization?

LIP - lateral intraparietal LIP is a candidate for localization Many neurons (60%+) show delay period activity Lateralization? Topographic organization?

Event-related analysis (2)

- can also estimate stimulus-locked (trial-triggered) responses for different event types without making assumptions about the HIRF
- similar matrix-algebra magic
- Not enough time to cover this here, but if you are interested, let me know...

- 1. **re-calculate at each votel** in the data set to get a statistical pacametric map (spm) [actual analyses us **veneral linear model** / multiple linear regression con-parametric tests]
- 2.decide on a scheme for **thresholding** the statistical image ("what is significant")
- 3.render result (co-registered to anatomy) [*optional:* superimpose on surface]
- 4.... that's basically it

Statistics

- 1. How well does the model fit the data?
- 2. What are the confidence intervals/error bars on the parameter estimates?
- 3. Are the parameter estimates different from zero? Different from each other?
- 4. Which of the regressors contribute to fitting the data?

GLM: calculate t

- ... the ratio of mean to standard error of our parameter estimates (p, or beta) = t
- error: look at residuals
- do inference on these t values: is the t observed at this voxel large enough?

- either voxelwise or taking into account the fact that voxels are not independent (clustering, GRF).
- voxelwise: corrected versus uncorrected?
- Because we are computing many statistical tests, we will get many false positives
 tens of thousands!

This is called the **multiple comparisons** problems

Corrections for multiple comparisons

- **Bonferroni:** divide alpha by number of tests... 0.05 (5e-2) becomes 0.000005 (5e-6) with 10,000 tests very conservative.
- **Resel:** resolution elements. After smoothing, roughly the number of independent elements in data set (use this instead of voxels)
- Gaussian Random Field theory

Multi-subject analysis

- Normalize brains anatomically: affine, e.g. Talairach, MNI, or non-rigid transformations...
- Fixed-effects analysis: assume brains are "the same" across subjects (more sensitive)
- Random-effects: allow between-subject variability in pattern of responses as another factor in your analysis (more conservative, but more likely to be "true")

Beware of statistical thresholds

Cortical area MT is specialized for visual motion perception

- Neurons in MT are selective for motion direction.
- Neural responses in MT are correlated with the perception of motion.
- Damage to MT or temporary inactivation **causes** deficits in visual motion perception.
- Electrical stimulation in MT causes changes in visual motion perception (Newsome).
- Computational theory quantitatively explains both the responses of MT neurons and the perception of visual motion.
- Well-defined **pathway** of brain areas (cascade of neural computations) underlying motion specialization in MT.

Additional Resources

- The Oxford FMRI book
- FSL course (Oxford, all lecture materials online) http://www.fmrib.ox.ac.uk/fslcourse/
- SPM book: http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/
- Random Field Theory tutorial MRC-CBU (Cambridge) http://imaging.mrc-cbu.cam.ac.uk/imaging/ PrinciplesRandomFields
- Additional slides [will be on website]...

Thanks + see you tomorrow and next term!

