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This lecture
1. Spatial and temporal properties of fMRI

(+ linearity, convolution)

2. Signal and Noise
(+ Fourier domain, convolution)

3. Preprocessing of fMRI data
(+ common software tools, registration)

4. Statistics + experimental design
(+ linear regression, GLM, 
multiple comparisons)

Matlab

http://web.mit.edu/18.06/www/Course-Info/Tcodes.html

http://tinyurl.com/2a3woex –   links to tutorials

>> if ~geek

>> if (geek || keen || phd==fmri )

help Tcodes; help project; help lsq;

Quick recap: 
preprocessing

[+ spatial filtering]

BrainVoyager
Matlab

FreeSurfer caret5

mrTools
Stanford / NYU tools

SurfRelax

Many software packages...

Python
C/C++
GNU Scientific Library

***

Octave

Data Preprocessing 

slice acquisition;
interpolation

Talairach 
space !?



File formats...
two file formats used here: PAR/REC, NIFTI/Analyze

on scanner... ...most tools use this

File formats...
two file formats used here: PAR/REC, NIFTI/Analyze

on scanner... ...most tools use this

ds1$ ptoa

Motion correction

what motion artefacts tend to 
look like...

... avoid, rather than deal with!

Spatial filtering

fwhm = 2
√

2 ln 2σ

... done by convolving image (at each timepoint) 
with a filter / kernel – often Gaussian

see also: http://en.wikipedia.org/wiki/fwhm

 2.3548

Spatial filtering
1.5mm inplane
128 x 128 matrix
no filtering

Spatial filtering
1.5mm inplane
128 x 128 matrix
1mm fwhm gauss



Spatial filtering
1.5mm inplane
128 x 128 matrix
3mm fwhm gauss

Spatial filtering
1.5mm inplane
128 x 128 matrix
5mm fwhm gauss

Spatial filtering
1.5mm inplane
128 x 128 matrix
10mm fwhm gauss

Spatial filtering

improves SNR

required for some statistics (Gaussian Random Fields)

increases overlap between subjects

does not preserve edges (blurs in “non-GM tissues”)

combines across sulci (anatomy!)

reduces peak values (e.g. when blurring statistical images)

Experimental design 
+ Statistics 

many slides courtesy of D.J. Heeger, NYU

Possible designs
• Block design: fixed sequence of different blocks

[A, B, A, B, ...] alternating

[A, rest, B, rest, A, ...] alternating with ‘null’

[A, C, B, A, A, C, D, rest, A, ...]  randomized

• Event-related designs: different type of ‘trials’ 
are presented in randomized order

[A, r, B, r, B, ...   ] r={2-5s} rapid, event-related

[A, r, B, r, B, ...   ] r={12-15s} sparse

• Mixed designs: blocks (states) containing 
different trials / events.



Which to choose?
Picking the right timing 

for block designs...

see e.g. Birn, et al. (2002) NeuroImage
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Example: 
an event-related 

experiment
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Posterior Parietal Cortex

Philoprogenitiveness (1820’s)  

spatial processing

planning of eye movements 

working memory

decision making, &c.

‘Association cortex’

Has been implicated in 

Posterior Parietal Cortex

Philoprogenitiveness (1820’s)  

spatial processing

planning of eye movements 

working memory

decision making, &c.

But no easy way to localize functional subdivisions 

‘Association cortex’

Has been implicated in 

LIP - lateral intraparietal

• LIP is a candidate for 
localization

• Many neurons (60%+) show 
delay period activity

• Lateralization?

• Topographic organization? 

LIP - lateral intraparietal

• LIP is a candidate for 
localization

• Many neurons (60%+) show 
delay period activity

• Lateralization?

• Topographic organization? 

Pare & Wurtz (1997), J Neurophysiol. 78(6)

LIP - lateral intraparietal

• LIP is a candidate for 
localization

• Many neurons (60%+) show 
delay period activity

• Lateralization?

• Topographic organization? 

Pare & Wurtz (1997), J Neurophysiol. 78(6)

Block-design version

peripheral target
~10º , 250ms

delay, distractors
3000ms

fixation dims, 
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• Topographic areas: 
travelling wave of activity.

• fMRI response phase 
reflects position in map.

Sereno et al., 2001
Schluppeck et al., 2005



Topographic areas of human 
posterior parietal cortex

Topography: Conclusions

• Two new topographic cortical areas (IPS1,  IPS2) 
in PPC beyond V7 
... Swisher et al. 2007, Wandell et al. 2007, Konen & Kastner, 2008

• Responses biased for contralateral visual field

• Responses reflect more than pure delay period 
activity

• Objective + useable definition of parietal areas

Issues

peripheral target
~10º , 250ms

delay, distractors
3000ms

fixation dims, 
250ms, saccade 

fixation reappears, 
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• Topographic areas: 
travelling wave of activity.

• fMRI response phase 
reflects position in map.

attention intention
motor plan

peri-
saccadic

gain fields

Is there sustained activity?

• 20 target locations, left/right

• delay period: 3s – 15s 

• intertrial interval: 10.5s – 15s

• 4 subjects 

• 2 scanning sessions
[~192 trials in 16 scans] 

Estimating Sustained 
Activity

1. Pick a region of interest (+ estimate HRF)

2. Make a simple model of neural activity...

3. ... then model the fMRI response

4. Estimate contributions to fMRI response by linear 
regression

5. Compare fMRI responses and model fits 

Schluppeck et al., 2006

Estimating Delay Period Activity
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Measured fMRI response
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r2 = 0.77

trials in which targets appeared in the contralateral visual field, e.g., trials
in the left visual hemifield for right hemisphere ROIs. We therefore fit the
model (see above) for trials left and right of fixation separately to the
responses measured in left and right hemisphere V7, IPS1, and IPS2. To
assess whether components of the fMRI responses were lateralized we
calculated a lateralization index, L, on the estimated amplitude parame-
ters as

L !
"contra # "ipsi

!"contra! $ !"ipsi!
,

where "contra is the estimated response amplitude for contralateral trials,
and "ipsi is the estimated response amplitude for ipsilateral trials. The
lateralization index is positive (0 ! L % 1) if responses are larger for
contralateral trials, negative ("1 % L ! 0) if responses are larger for
ipsilateral trials, and 0 if responses are equal for both ipsilateral and
contralateral trials.

Statistical parameter mapping. In addition to the region-of-interest
analyses described below, we also performed conventional statistical pa-
rameter mapping (Friston et al., 1991) on a subset of the data (Fig. 2
shows data from subject 3, one scan, 300 s). This analysis allowed us to
localize regions of cortex that exhibited statistically significant sustained
delay-period activity, even if they did not exhibit topography. Analysis
was performed using FEAT (FMRI Expert Analysis Tool) version 5.4,
part of FSL [Software Library of FMRIB (Functional Magnetic Reso-
nance Imaging of the Brain), www.fmrib.ox.ac.uk/fsl]. The general linear
model was identical to that outlined above, with three covariates or ex-
planatory variables: one for transient events at the beginning (v) of every
trial, one for transient events at the end (s) of every trial, and one to
account for sustained responses during the delay period (d). Statistical
maps were thresholded using clusters determined by Z # 2.3 and a (cor-
rected) cluster significance threshold of p $ 0.01 (Worsley et al., 1992).
The resulting thresholded statistical maps were rendered on a partially
inflated cortical surface representation of the subject’s cortex using cus-
tom software (Larsson, 2001).

Results
Topography and statistical parameter mapping
We defined three regions in posterior parietal cortex (V7, IPS1,
and IPS2) in each subject by topographic mapping as described
previously (see Materials and Methods) (Schluppeck et al., 2005).
For additional analysis, data from the main experiment were then
analyzed by averaging over regions of cortical gray matter corre-
sponding to each of the three topographically defined cortical
areas. To confirm the choice of our ROIs, we also performed
conventional statistical parameter mapping on a subset of the
data (Fig. 2). This analysis revealed regions in the intraparietal
sulcus with statistically significant sustained responses during the
delay periods, which fell within the ROIs defined by topographic
mapping.

fMRI responses to memory-guided saccades
The fMRI responses exhibited three distinct components corre-
sponding to the three intervals in the memory-guided saccade
task (Fig. 3). (1) The first component was locked to the onset of
the trial when the visual stimulus (cue) was presented. (2) The
second component reflected a sustained response lasting
throughout the delay period. (3) The third component was
locked to the eye movement interval at the end of each trial. By
systematically varying the delay-period duration, we unambigu-
ously determined that activity was sustained during the delay
periods in all three areas. For longer delay periods (e.g., 12 and
15 s) the transient events at the beginning and end of the trials
were separated from one another in time, despite the relatively
slow hemodynamics. The measured fMRI responses did not re-
turn to baseline during the delay periods, even for the longest

delay-period durations. For short delay periods (e.g., 3 and 6 s),
conversely, the different components of the response coalesced
because of the sluggishness of the hemodynamics.

Model simulations
The slow timescale of the hemodynamic response presents a chal-
lenge for fMRI measurements aimed to unambiguously separate
sensory, motor, and delay-period activity (Fig. 4). We performed
model calculations to illustrate this point and to optimize the
design of our imaging experiment. We calculated the expected

Figure 2. Cortical areas in posterior parietal cortex. A, Tessellated surface representation of
the gray/white matter boundary in lateral/posterior aspect (right hemisphere of one subject,
partially inflated). Three cortical areas are indicated. Green, V7; dark blue, IPS1; red, IPS2. These
cortical areas were defined in a separate experiment that measured topographic organization
during delayed saccades (Schluppeck et al., 2005). Light blue, A region within the IPS adjacent
to IPS1 and IPS2, approximately comparable in size but that did not exhibit topography. This
more lateral IPS region was used as an internal control. cs, Central sulcus; sts, superior temporal
sulcus. B, Axial slices of the high-resolution anatomical image of the same subject. (Radiological
convention; spacing between displayed slices, 4 mm.) Cortical areas are superimposed in color.
L, Left; R, right. C, D, Statistical parameter mapping. Partially inflated left hemisphere (subject
S3) in lateral (C) and posterior (D) aspect. Colors, Areas with significant delay-period activity
(Z # 2.3; corrected cluster significance threshold, p ! 0.01; see Materials and Methods).
Region of interest outlines: green, V7; blue, IPS1; red, IPS2. Location of intraparietal sulcus (ips)
is indicated as an anatomical landmark.

Schluppeck et al. • Sustained Activity in Topographic Areas of Posterior Parietal Cortex J. Neurosci., May 10, 2006 • 26(19):5098 –5108 • 5101

Usually...
1. this is looking at time course data from 

(functionally) predefined areas

2. ... could also show a map of the parameter 
estimates (cf. block-design data)

Estimated Components



Estimation

iTunesU, MIT Open Course Ware, online
search for “linear regression”, “linear algebra”, 
UCLA Advanced Neuroimaging Summer School
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In FSL / SPM

design matrix is often 
represented as an image

low numbers: dark
high numbers: light

example: 12s on, 12s off
TR 1.5s, 10 cycles

indicates scale of 
high-pass filter

time: 10s ticks

“regressors”
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How to solve for p?

y = Xp
Unlikely to find exact 
solution, because we 
have more equations 

than unknowns.

popt = X#y
... where popt are the 

(best) parameter 
estimates and # means 

pseudoinverse.

One parameter example
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... where x, y  are vectors 
and p is a number.

�y = �xp

Solve...

  

minimum.

A second method of obtaining the solution
comes from considering the geometry of the
problem in the N -dimensional space of the
data vector. We seek a scale factor, p, such
that the scaled vector p!x is as close as possi-
ble (in a Euclidean-distance sense) to !y. Ge-
ometrically, we know that the scaled vector
should be the projection of !y onto the line in
the direction of !x:

p!x = (!y · x̂)x̂ =
(!y · !x)
||!x||2 !x

Thus, the solution for p is the same as above.

y

x

p x

A third method of obtaining the solu-
tion comes from the so-called orthogonality
principle. The concept is that the error vec-
tor for the optimal p should be perpendicular
to !x:

!x · (p!x − !y) = 0.

Solving for p gives the same result as above.
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Generalization: Fitting with a basis set

The basic regression problem generalizes to fitting the data with a sum of basis functions, fmn:

min
{pm}

N∑

n=1
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pmfmn)2

or in matrix form:
min

!p
||!y − F!p||2

where F is a matrix whose columns contain the basis functions. For example, if we wanted
to include an additive constant in the fitting done in the previous section, F would contain a
column with the xn’s, and another column of all ones.

As before there are three ways to obtain the solution: using (vector) calculus, using the geom-
etry of projection, or using the orthogonality principle. The geometric solution can be greatly
simplified by first computing the SVD of matrix F [verify]. The orthogonality method is the
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Solution 3 (using the orthogonality principle). The error vector for the 
best p is perpendicular to x:
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Least-squares regression (for ref)

�x · �e = 0

measured data

‘direction of model’

best fit (scaled by p)

Multiple parameters

... where y, p  are vectors 
and X is the known matrix. 
and [•]T is transpose and 
[•]-1 is the matrix inverse.

y = Xp
XTy = XTXp

(XTX)−1XT y = popt

>> p = pinv(X)*y

>> p = X \ y

pseudoinverse (X)

Multiple parameters

... where y, p  are vectors 
and X is the known matrix. 
and [•]T is transpose and 
[•]-1 is the matrix inverse.

y = Xp
XTy = XTXp

(XTX)−1XT y = popt

projection matrix

>> p = pinv(X)*y

>> p = X \ y

pseudoinverse (X)



! Orthogonality

(XTX)−1

• Make sure the design matrix makes sense!

• Is XTX always invertible? If not, why not?

• What is the interpretation for the values corresponding to 
each element of popt? Is the meaning of each value 
independent of the other elements?

  

Event-related fMRI experiment
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Event-related design matrix

p1 is ‘neural’ response to 
trial type 1

Time of each 
type 1 trial

Trial type 2
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



Event-related analysis (2)

• can also estimate stimulus-locked (trial-triggered) 
responses for different event types without 
making assumptions about the HIRF 

• similar matrix-algebra magic 

• Not enough time to cover this here, but if you are 
interested, let me know...

Inference

Simple (block) design

• Example visual experiment:

• Alternate Xs of (A) left visual field with Xs of (B) 
right visual field [repeat, say, 10 times]

dots, gratings, movies, ...

Time

A (left) B (right) A B



Example voxel in visual 
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...is this a “significant” 
response?

• Are the distributions different from each other?

• at each voxel, calculate a statistic ( e.g. Student’s t )

• calculate means for 2 conditions mean(A), mean(B)

• and standard error of differences between them 
sqrt( [var(A)+var(B)]./n ) % n = #samples in each group 

t =
X̄1 − X̄2

sX̄1−X̄2

sX̄1−X̄2
=

�
s2
1 + s2

2

n
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difference in means

SE of difference

Statistical significance

• could we have observed that specific t value by 
chance? ( inference )

• null hypothesis H0: difference in means is 0
degrees of freedom: 2n-2

mA = mean(A); % => +0.5134
mB = mean(B); % => -0.5145
n = 80; %  # of samples in each group
semAB = sqrt( ( var(A)+var(B) )./80 ); 
t = (mA - mB)./semAB;

p = 1 - tcdf( 5.330, 160-2) % cumulative t

0.1927

1.7e-7 = 0.00000017 i.e. reject H0
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  1 - tcdf( 5.330, 160-2) is area under curve from 5.33 →"

... highly unlikely to be due to chance

t distribution 
158 dof

1.re-calculate at each voxel in the data set 
to get a statistical parametric map (spm)
[ actual analyses use general linear model / multiple 
linear regression / non-parametric tests ]

2.decide on a scheme for thresholding the 
statistical image

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... thatʼs basically it

higher 
response in 
A than B

higher 
response in 

B than A

L

cortex

cerebellum

grayscale: signal intensity

1.re-calculate at each voxel in the data set 
to get a statistical parametric map (spm)
[ actual analyses use general linear model / multiple 
linear regression / non-parametric tests ]

2.decide on a scheme for thresholding the 
statistical image (“what is significant”)

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... thatʼs basically it



1.re-calculate at each voxel in the data set 
to get a statistical parametric map (spm)
[ actual analyses use general linear model / multiple 
linear regression / non-parametric tests ]

2.decide on a scheme for thresholding the 
statistical image (“what is significant”)

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... thatʼs basically it

estim
atio

n 1.re-calculate at each voxel in the data set 
to get a statistical parametric map (spm)
[ actual analyses use general linear model / multiple 
linear regression / non-parametric tests ]

2.decide on a scheme for thresholding the 
statistical image (“what is significant”)

3.render result (co-registered to anatomy)
[ optional: superimpose on surface ]

4.... thatʼs basically it

estim
atio

n

inference

  

1. How well does the model fit the data?

2. What are the confidence intervals/error bars on the 
parameter estimates?

3. Are the parameter estimates different from zero? 
Different from each other?

4. Which of the regressors contribute to fitting the 
data?

Statistics GLM: calculate t

• ... the ratio of mean to 
standard error of our 
parameter estimates (p, or 
beta) = t

• error: look at residuals 

• do inference on these t 
values: is the t observed at 
this voxel large enough?
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GLM: contrasts
• calculate individual statistical 

maps

• compare: by contrasting them

• e.g. 
[1 0] for ‘responds to visual’
[0 1] for ‘responds to audio’

[1 -1] for ‘responds more to 
visual than audio’

http://www.fmrib.ox.ac.uk/fsl/feat5/glm.html

audio

visual

FSL: t →p → Z
for a v clear explanation:

audio

“Thresholding”

• either voxelwise or taking into account the fact 
that voxels are not independent (clustering, GRF).

• voxelwise: corrected versus uncorrected?

• Because we are computing many  statistical tests, 
we will get many false positives

This is called the multiple comparisons 
problems

tens of 
thousands!



Kinds of error...

signal 
present

signal 
absent

YES hit
false 

positive

NO miss
correct 
reject

controlled by 
alpha 

e.g. p<0.05... we 
conclude

data say...

α: false positive = false alarm = Type I error
β: false negative = miss = Type II error 

Kinds of error...

signal 
present

signal 
absent

YES hit
false 

positive

NO miss
correct 
reject

controlled by 
alpha 

e.g. p<0.05... we 
conclude

data say...

With 10,000 tests, we may have 
500 false positives

Corrections for 
multiple comparisons

• Bonferroni: divide alpha by number of tests...
0.05 (5e-2) becomes 0.000005 (5e-6) with 10,000 
tests .... very conservative.

• Resel: resolution elements. After smoothing, 
roughly the number of independent elements in 
data set (use this instead of voxels) 

• Gaussian Random Field theory

Multi-subject analysis

• Normalize brains anatomically: affine, e.g. 
Talairach, MNI, or non-rigid transformations...

• Fixed-effects analysis: assume brains are “the 
same” across subjects (more sensitive)

• Random-effects: allow between-subject 
variability in pattern of responses as another factor 
in your analysis (more conservative, but more likely 
to be “true”)

Some thoughts...



Beware of...

• ... statistical thresholds

• ... circular reasoning

• ... finding the “cortical locus for 
cognitive ability X”

Beware of statistical 
thresholds

low high
stimulus contrast

Alternative

Heeger et al, Nature Neurosci (2000)

V1

...plot parameter estimates with error bars

Circular reasoning
1. Hypothesis: that there is a cognitive process called groking 

that is localized to a functionally specialized brain area.

2. Design an experiment with two tasks, one of which you 
believe imposes a greater load on groking.

3. Run the experiment and find sure enough that there is a 
brain area that responds more strongly during high grok load 
trials then low load trials.

What can you conclude from this?

Case study: visual area MT/
V5 and motion perception

MT

Geoff Boynton
Alex Huk

Cortical area MT is specialized 
for visual motion perception

• Neurons in MT are selective for motion direction.

• Neural responses in MT are correlated with the perception of 
motion.

• Damage to MT or temporary inactivation causes deficits in 
visual motion perception.

• Electrical stimulation in MT causes changes in visual motion 
perception (Newsome).

• Computational theory quantitatively explains both the 
responses of MT neurons and the perception of visual motion.

• Well-defined pathway of brain areas (cascade of neural 
computations) underlying motion specialization in MT.



Additional Resources
• The Oxford FMRI book

• FSL course (Oxford, all lecture materials online)
http://www.fmrib.ox.ac.uk/fslcourse/

• SPM book: 
http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/

• Random Field Theory tutorial  MRC-CBU 
(Cambridge)
http://imaging.mrc-cbu.cam.ac.uk/imaging/
PrinciplesRandomFields

• Additional slides [will be on website]...

Thanks + see you 
tomorrow and next 

term!

Filter sizes
sigma [mm]

fwhm [mm]
(~ 2.35 sigma)

1 2.35

3 7.10

5 11.77

0.59 1

1.77 3

2.94 5

5.89 10

fwhm = 2
√

2 ln 2σ

 2.3548

standard
deviation

full-width
at half-maximum

  

Least Squares Optimization

The following is a brief review of least squares optimization and constrained optimization
techniques. I assume the reader is familiar with basic linear algebra, including the Singular
Value decomposition (as reviewed in my handout Geometric Review of Linear Algebra).

Least squares (LS) problems are those in which the objective function may be expressed as a
sum of squares. Such problems have a natural relationship to distances in Euclidean geometry,
and the solutions may be computed analytically using the tools of linear algebra.

1 Regression

Least Squares regression is the most basic form of LS optimization problem. Suppose you
have a set of measurements, yn gathered for different parameter values, xn. The LS regression
problem is to find:

min
p

N∑

n=1

(yn − pxn)2

We rewrite the expression in terms of column N -vectors as:

min
p

||!y − p!x||2

Now we describe three ways of obtaining the solution. The traditional (non-linear-algebra)
approach is to use calculus. If we set the derivative of the expression with respect to p equal
to zero and solve for p, we get:

popt =
!yT!x

!xT!x
.

Technically, one should verify that this is a minimum (and not a maximum or saddle point) of
the expression. But since the expression is a sum of squares, we know the solution must be a

• Author: Eero Simoncelli, Center for Neural Science, and Courant Institute of Mathematical Sciences.
• Created: 15 February 1999. Last revised: 21 July 2003.
• Send corrections or comments to eero.simoncelli@nyu.edu

Least-squares regression (for ref)
Find p to make (xn p) as close as possible to yn for all n. 
That is, choose p to minimize: 
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Or, in vector notation: 
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Solution 1 (using calculus). Take the derivative of the above 
expression, set it equal to zero, and solve for p:

  

Solution 2 (using geometry). Find the scale factor p such that the 
scaled vector p x is as close as possible (in Euclidean distance) to y. 
Geometrically, we know that the scaled vector should be the projection 
of y onto the line in the direction of x:

minimum.

A second method of obtaining the solution
comes from considering the geometry of the
problem in the N -dimensional space of the
data vector. We seek a scale factor, p, such
that the scaled vector p!x is as close as possi-
ble (in a Euclidean-distance sense) to !y. Ge-
ometrically, we know that the scaled vector
should be the projection of !y onto the line in
the direction of !x:

p!x = (!y · x̂)x̂ =
(!y · !x)
||!x||2 !x

Thus, the solution for p is the same as above.

y

x

p x

A third method of obtaining the solu-
tion comes from the so-called orthogonality
principle. The concept is that the error vec-
tor for the optimal p should be perpendicular
to !x:

!x · (p!x − !y) = 0.

Solving for p gives the same result as above.

y

x

px-y
error

Generalization: Fitting with a basis set

The basic regression problem generalizes to fitting the data with a sum of basis functions, fmn:

min
{pm}

N∑

n=1

(yn −
∑

m

pmfmn)2

or in matrix form:
min

!p
||!y − F!p||2

where F is a matrix whose columns contain the basis functions. For example, if we wanted
to include an additive constant in the fitting done in the previous section, F would contain a
column with the xn’s, and another column of all ones.

As before there are three ways to obtain the solution: using (vector) calculus, using the geom-
etry of projection, or using the orthogonality principle. The geometric solution can be greatly
simplified by first computing the SVD of matrix F [verify]. The orthogonality method is the
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Solution 3 (using the orthogonality principle). The error vector for the 
best p is perpendicular to x:
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